Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 EXECUTIVE SUMMARY</td>
<td>3 – 6</td>
</tr>
<tr>
<td>Objectives and Methodology</td>
<td></td>
</tr>
<tr>
<td>2 FY18 KEY RESULTS</td>
<td>7 – 22</td>
</tr>
<tr>
<td>Environmental Footprint Overview</td>
<td></td>
</tr>
<tr>
<td>Carbon Overview and Key Findings</td>
<td></td>
</tr>
<tr>
<td>Water Footprint Overview and Key Findings</td>
<td></td>
</tr>
<tr>
<td>Waste Footprint and Key Findings</td>
<td></td>
</tr>
<tr>
<td>3 PRIORITY CATEGORIES OF ENVIRONMENTAL FOOTPRINT</td>
<td>23 – 65</td>
</tr>
<tr>
<td>Coffee (Carbon & Water)</td>
<td></td>
</tr>
<tr>
<td>Dairy (Carbon & Water)</td>
<td></td>
</tr>
<tr>
<td>Packaging (Carbon, Water and Waste)</td>
<td></td>
</tr>
<tr>
<td>Food (Carbon, Water and Waste)</td>
<td></td>
</tr>
<tr>
<td>Other Beverages (Carbon & Water)</td>
<td></td>
</tr>
<tr>
<td>Store Equipment, Energy and Transportation (Carbon)</td>
<td></td>
</tr>
</tbody>
</table>

© 2020 Starbucks Coffee Company. All rights reserved.
EXECUTIVE SUMMARY
For the first time ever, Starbucks has expanded its annual environmental reporting by conducting a comprehensive footprint inclusive of waste, water, and carbon across our global enterprise.

Data from all over the globe was consolidated to calculate Starbucks Waste, Water, and Carbon footprints. This environmental footprint was calculated based on FY18 data and will serve as the baseline for goal setting and performance measurement moving forward.

Starbucks partnered with two of the best in the industry to support both the calculation methodology and the scenario analysis. Quantis conducted the calculation of the footprint quantities. World Wildlife Fund provided project and scope guidance, global end of life reporting for waste, and recommendations for ways to reduce impact in all three areas. The carbon footprint calculation methodology is in line with the current Greenhouse Gas Protocol published by the World Resources Institute.
This environmental baseline report will...

Provide **transparency** to key environmental indicators to stakeholders, both internal and external.

Drive **prioritization** of biggest impact opportunities, and assist in the establishment of quantifiable reduction goals and targets.

Enable **accountability** and integrate sustainability into decision-making across business functions.
Defining Starbucks Global Environmental Impact

1. Gather comprehensive data set across global business
2. Extrapolate for areas lacking data – i.e. global markets and Licensed/Joint Ventures
3. Quantify impact leveraging industry-approved methodologies (i.e. GHG Protocol)

Gather Business Activity Metrics

<table>
<thead>
<tr>
<th>Purchased Goods and Services</th>
<th>Transportation and Distribution</th>
<th>Starbucks Product Manufacturing</th>
<th>Store Operations</th>
<th>Product End of Life</th>
<th>Business Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>Fuel consumption for all modes of transit</td>
<td>• Energy for Coffee Roasting, manufacturing and distribution</td>
<td>• Energy</td>
<td>• Waste emissions</td>
<td>• Fuel consumption from Business Travel and Employee Commuting</td>
</tr>
<tr>
<td>(volume of carbon equivalent greenhouse gases in metric tons – CO2e)</td>
<td>• Supply Chain waste end of life emissions</td>
<td>• Store Materials Production</td>
<td>• Energy to recover product waste (recycling)</td>
<td>• Energy to operate office buildings</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>• Agriculture</td>
<td>• Ethos Water Production</td>
<td>• Water usage (facility)</td>
<td>• Water consumption at office buildings</td>
<td></td>
</tr>
<tr>
<td>(water withdrawal volumes in cubic meters and estimated high water risk areas)</td>
<td>• Coffee Processing</td>
<td>• Manufacturing Process water</td>
<td>• Water treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste & Pollution</td>
<td>X – Not quantifying/ in scope</td>
<td>• Packaging Waste from Production</td>
<td>• Organic and Inorganic waste in store (BOH and FOH)</td>
<td>• Landfill contribution</td>
<td>Office building waste</td>
</tr>
<tr>
<td>(waste volumes in metric tons and estimated landfill/pollution contribution)</td>
<td></td>
<td>• Organic waste from coffee roasting, juice production, and coffee extraction.</td>
<td>• Construction waste</td>
<td>• Pollution (mismanaged waste)</td>
<td></td>
</tr>
</tbody>
</table>
GLOBAL ENVIRONMENTAL FOOTPRINT SUMMARY
Overview of Enterprise 2018 Baseline Footprint

Carbon

16 MILLION TONS of greenhouse gases were emitted in 2018 across Starbucks full value chain, including Land Use Change.

Water

1 BILLION CUBIC METERS of Water was withdrawn across Starbucks full value chain.

Waste

868 KILO TON of Waste was emitted across Starbucks full value chain. Waste adds 1.3M ton of carbon emissions to the Starbucks baseline carbon footprint.
CARBON
Key Findings FY18 Results | Carbon

Starbucks Global Carbon footprint – 15.6 MMT CO2-eq

Scope 1: Direct Emissions
Scope 2: Emissions from Electricity Purchased
Scope 3: Emissions from all Value Chain activities

Key Takeaways

- Most of the emissions reductions to reach a 1.5C target will need to be made in the supply chain, particularly in the sourcing of Dairy, Coffee, Packaging, and Food
- Land Use Change* for the first time in this year’s footprint, accounts for 10% of total emissions
- Scope 1 & 2 emissions are only 4% of total footprint

*Land Use Change was calculated for priority commodities, in cases where data is available
Global Scope 1 Emissions Breakdown: 319.6 KMT CO2-eq

Key Takeaways

- Scope 1 & 2 emissions are only 4% of total footprint
- These emissions are in Starbucks direct control
- Nitrous Oxide used in whip cream is 50% of Scope 1 emissions and 1% of total Starbucks carbon footprint
- Natural gas used to roast coffee is only .5% of total Starbucks carbon footprint
Global Scope 2 Emissions (Electricity Purchased) Breakdown: 285.6 KMT CO2-eq

Key Takeaways
- Scope 1 & 2 emissions are only 4% of total footprint
- Starbucks purchases enough renewable energy to reduce Scope 2 emissions by 65%
- Starbucks current renewable purchase reduces Starbucks total global footprint by 3%
Global Scope 3 Emissions Breakdown: 14.99 MMT CO2-eq (including Land Use Change)

Key Takeaways

• Scope 3 emissions are 96% Starbucks total carbon footprint
• C.A.F.E. Practices increases in yield per hectare and zero deforestation policy reduces Starbucks carbon footprint for coffee by 50% compared to what the coffee footprint would have been without C.A.F.E. Practices; Equal to a 10% reduction in Starbucks total carbon footprint
• Land Use Change* accounts for 10% of Starbucks total carbon footprint

*Land Use Change was calculated for priority commodities, in cases where data is available
Starbucks Global Water Footprint: 1011 Mm³

Key Takeaways

- Dairy, Coffee and Other Beverages were the most water intensive commodities driven by agriculture activities.
- 98% of the Water withdrawal is embedded water in scope 3 (such as water withdrawals for coffee production etc.).
- Water is a local issue, and thus must be managed at the basin or landscape scale, as opposed to the global scale.

* Co-manufacturing and Services data is based on spend data, future work is planned to obtain quantity data to improve accuracy of footprint.
Priority hotspots per workstream are determined by level of risk & sourcing volume and overlap in key commodities for a given basin.

Water usage in Dairy and Nuts farming and Dairy manure management are significant drivers for water risk.

Coffee regions are affected by various water issues including flooding, water quality, and periodic drought. In addition to what is mapped here there are other coffee sourcing regions susceptible to drought, such as Nicaragua, Costa Rica, Honduras and Tanzania.
WASTE
Starbucks Waste from Stores and Operations: 868 KMT

Key Takeaway
- 55% of all waste is leaving our stores, 85% of which is packaging

*Inedibles include coffee grounds, coffee chaff, and used tea bags.
Out of Store is the waste occurring after customer purchase a given product and consume and dispose it out of the store.
Waste data includes Licensed Stores.
Starbucks Waste from Stores and Operations: 868 KMT

Key Takeaways

- Packaging leaving our stores is a significant volume contributor.

*Inedibles include coffee grounds, coffee chaff, and used tea bags.

Out of Store is the waste occurring after customer purchase a given product and consume and dispose it out of the store.

Waste data includes Licensed Stores.
Total Starbucks Food & Beverage Waste: 413 KMT

Key Takeaways
Starbucks is able to compost a significant portion of coffee grounds. A lack of local composting infrastructure is the major barrier.
Packaging & Others Waste - Quantity

Total Waste: 455 KMT

Key Takeaways
This includes others item that are not directly packaging, like trash bags and tertiary packaging, that are needed for store operations.

Polypropylene (PP) is the largest source of waste, used for cold cups and lids, straws, splash sticks, and hot cup lids.

Cupstock and Paperboard are the second largest.
03

PRIORITY CATEGORIES
BY ENVIRONMENTAL FOOTPRINT
Priority Environmental Footprint Categories Summary

Key Takeaways

- **Priority Categories Contribute**
 - Carbon: 11 MMT CO2-eq
 - ~ 70% of total Carbon Footprint
 - Water: 626 Mm3
 - ~ 62% of total water footprint.

- Dairy and Coffee are the highest contributors to Carbon Footprint due to their production stage.

- Other beverages contributes the most to water withdrawal results due to agriculture activities.
Coffee, Carbon and Water Footprint (Regional)

Coffee Key Takeaways

Carbon: 1690 KMT CO2-eq (included LUC)
~ 11% of total carbon footprint

Carbon: 1059 KMT CO2-eq w/o LUC

Water: 52 Mm3
~ 5% of total company water footprint

LATAM contributes to more than 60% of the Carbon and Water impacts from coffee sourcing.
Key Takeaways

Land Use Change and coffee production are the largest contributors to the total Carbon of coffee value chain; LUC ~ 22%
Coffee, at farm ~ 37%

The total value chain of coffee represents ~ 19% of total Carbon footprint

Coffee Value Chain as a Percent of Total Starbucks Footprint

<table>
<thead>
<tr>
<th>CO₂</th>
<th>Water</th>
<th>Waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>19%</td>
<td>5%</td>
<td>8%</td>
</tr>
</tbody>
</table>
Key Takeaways

Coffee production at farm accounts for 69% of the total impact of the value chain.

The total value chain of coffee represents ~9% of total company water footprint.

Water withdrawal in coffee production and processing is the highest contributor to coffee water impacts.

Coffee Value Chain as a Percent of Total Starbucks Footprint

<table>
<thead>
<tr>
<th>Category</th>
<th>CO₂</th>
<th>Water</th>
<th>Waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coffee, at farm</td>
<td>19%</td>
<td>5%</td>
<td>8%</td>
</tr>
</tbody>
</table>
Coffee regions are affected by various water issues including flooding, water quality, and periodic drought. Flooding was the most frequent water risk across all coffee sourcing locations. In addition to risk areas identified there are other coffee sourcing regions susceptible to drought, such as Nicaragua, Costa Rica, Honduras and Tanzania.
Dairy Global Breakdown

Carbon Footprint w/o LUC (KMT CO2-eq)

- **3.3%**
- **96.7%**

Water Footprint (Mm3)

- **1.1%**
- **98.9%**

Dairy Key Takeaways

Carbon: 3.34 MMT CO2-eq (included LUC)

- ~21% of total carbon footprint

Carbon: 2.82 MMT CO2-eq w/o LUC

Water: 157 Mm3

- ~15% of total water footprint

This data represents production only.
Regional Dairy Environmental Factors from China, AP and LATAM are higher contributors in magnitude to Carbon Footprint, per kg, when compared to US and Canada (~ 2.5 times) due to local production practices and feed production.

*Data excludes dairy Land Use Change
Fluid Dairy value chain, Carbon Footprint

The total value chain of Fluid Dairy represents ~ 22% of total Carbon footprint.

Globally, enteric methane and feed production are the largest drivers, followed by manure management.

In many parts of the world, increasing animal productivity is an effective GHG mitigation strategy.

Global Dairy: GHG Emissions

The most important factors driving the carbon footprint in dairy systems globally include milk production level of the herd, animal diets, and manure-handling practices.

Global Dairy Value Chain as a Percent of Total Starbucks Footprint

<table>
<thead>
<tr>
<th></th>
<th>CO₂</th>
<th>Water</th>
<th>Waste</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22%</td>
<td>16%</td>
<td>20%</td>
</tr>
</tbody>
</table>
Fluid Dairy Value Chain, Water

Key Takeaways

The highest impact in terms of water footprint occurs in Fluid Dairy, production.

The total value chain of Fluid Dairy represents ~ 16% of total Water Footprint.
PACKAGING
Global Packaging Breakdown – Paper vs Plastic

Plastic includes beverage components, cold & hot cup, jug, packaged coffee, packaged food, and others;
Paper includes cups, warming paper, bags, cup sleeves and others.

Packaging Key Takeaways

Carbon: 900 KMT CO2-eq
~ 6% of total carbon footprint

Water: 47 Mm3
~ 5% of total water footprint

Plastic contributes to nearly 70% of the Carbon and water emissions for packaging.
Packaging – Plastics and Paper

Plastic impact contribution by type

- Total Carbon: 622.3 KMT CO2-eq ~ 69% of packaging Carbon
- Total water footprint: 24.3 m3 ~ 52% of packaging Carbon
- PP and PET are the highest contributors to plastic Carbon and water footprint.

Paper impact contribution by type

- Total Carbon: 275.35 KMT CO2-eq ~ 31% of packaging Carbon
- Total water footprint: 22.76 m3 ~ 48% of packaging Carbon
- Cupstock, paper recycle, and Paperboard contribute to more than 75% of Carbon and Water impacts for paper.
Packaging Carbon Footprint – End of Life

Total Packaging Waste Carbon Footprint: 259 KMT CO2-eq.

Paper & Cardboard generates 95% of Carbon emissions, despite being less than half of packaging waste.

Plastic has low end of life emissions as it’s inert.
Asia Pacific accounts for the majority of mismanaged waste due to limited infrastructure.

Global estimates extrapolated based on data from US company-operated stores.

Estimated end-of-life fate by market

<table>
<thead>
<tr>
<th>Region</th>
<th>Recycling</th>
<th>Landfill or incineration</th>
<th>Leakage</th>
<th>Total (Million kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>17.6%</td>
<td>63.5%</td>
<td>18.9%</td>
<td>61,720,349</td>
</tr>
<tr>
<td>Canada</td>
<td>20.0%</td>
<td>60.0%</td>
<td>20.0%</td>
<td>45,040,956</td>
</tr>
<tr>
<td>Latin America</td>
<td>22.5%</td>
<td>62.5%</td>
<td>15.0%</td>
<td>30,000,000</td>
</tr>
<tr>
<td>China</td>
<td>15.0%</td>
<td>70.0%</td>
<td>15.0%</td>
<td>15,000,000</td>
</tr>
<tr>
<td>Japan</td>
<td>18.9%</td>
<td>66.6%</td>
<td>14.5%</td>
<td>15,000,000</td>
</tr>
<tr>
<td>Other Asia Pacific</td>
<td>12.5%</td>
<td>75.0%</td>
<td>12.5%</td>
<td>10,000,000</td>
</tr>
<tr>
<td>EMEA</td>
<td>14.5%</td>
<td>68.9%</td>
<td>16.6%</td>
<td>9,000,000</td>
</tr>
</tbody>
</table>
Packaging: End-of-Life Fate

Widely recyclable plastic packaging (rigid PET, HDPE, and PP containers) accounts for 94% of plastic footprint.
Global packaging footprint

Beverage system (cups, lids, sleeves, & straws) accounts for 50% of packaging waste footprint.

Global packaging use by material

<table>
<thead>
<tr>
<th>Material</th>
<th>%</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic</td>
<td>53.7%</td>
<td>188,400,888</td>
</tr>
<tr>
<td>Paper</td>
<td>46.3%</td>
<td>162,761,565</td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
<td>351,162,453</td>
</tr>
</tbody>
</table>
Packaging: Sustainable Material Inputs

Majority of packaging is currently virgin material.

<table>
<thead>
<tr>
<th>Material</th>
<th>Recycled Content</th>
<th>Virgin content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cupstock</td>
<td>11.0%</td>
<td>89.0%</td>
</tr>
<tr>
<td>Corrugate</td>
<td>70.0%</td>
<td>30.0%</td>
</tr>
<tr>
<td>Kraft paper</td>
<td>67.6%</td>
<td>32.4%</td>
</tr>
<tr>
<td>Paper</td>
<td>100.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Paperboard</td>
<td>0.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Bleached paper</td>
<td>0.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Paper Total</td>
<td>40.8%</td>
<td>59.2%</td>
</tr>
<tr>
<td>Plastic Total</td>
<td>0.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Grand Total</td>
<td>18.9%</td>
<td>81.1%</td>
</tr>
</tbody>
</table>

Global packaging inputs, kg:
- Virgin Paper: 96,370,650 kg
- Virgin Plastic: 188,400,888 kg
- Recycled Content: 66,390,915 kg
3 | Top Categories by Environmental Footprint | Food

Food Breakdown

Carbon Footprint (KMT CO2-eq)

- Animal Proteins: 337 KMT CO2-eq
- Grains: 228 KMT CO2-eq
- Cheese: 160 KMT CO2-eq
- Butter: 153 KMT CO2-eq
- Whole Milk Powder: 98 KMT CO2-eq
- Other dairy: 52 KMT CO2-eq
- packaged Food: 19 KMT CO2-eq
- Cream: 16 KMT CO2-eq
- Sugar: 11 KMT CO2-eq
- Yogurt: 10 KMT CO2-eq
- Sour cream: 7 KMT CO2-eq
- Nuts: 5 KMT CO2-eq
- Fruit: 4 KMT CO2-eq
- Coca: 3 KMT CO2-eq
- Vegetable: 1 KMT CO2-eq
- Condiments: 0 KMT CO2-eq

Water Withdrawal (Mm3)

- Animal Proteins: 18 Mm3
- Grains: 11 Mm3
- Cheese: 8 Mm3
- Butter: 8 Mm3
- Whole Milk Powder: 5 Mm3
- Other dairy: 1 Mm3
- packaged Food: 1 Mm3
- Cream: 1 Mm3
- Sugar: 10 Mm3
- Yogurt: 0 Mm3
- Sour cream: 0 Mm3
- Nuts: 7 Mm3
- Fruit: 4 Mm3
- Coca: 0 Mm3
- Vegetable: 0 Mm3
- Condiments: 0 Mm3

Food Key Takeaways

Carbon: 1,131 KMT CO2-eq
~ 7% of total carbon footprint

Water: 77 Mm3
~ 8% of total water footprint

Animal protein is the highest contributor to carbon and water footprint in food category.

Sugar, nuts, vanilla and fruits in general are important in terms of water footprint.
Animal Protein breakdown

Carbon Footprint (KMT CO2-eq)
- Eggs: 146.8
- Pork: 127.2
- Beef: 24.3
- Chicken: 20.2
- Turkey: 18.6

Water Footprint (Mm3)
- Eggs: 7.9
- Pork: 7.3
- Beef: 1.1
- Chicken: 1.0
- Turkey: 0.8

Animal Protein

Carbon:
- 337 KMT CO2-eq
- ~ 2% of total company Carbon

Water:
- 18 Mm3
- ~ 2% of total water footprint
US Egg: GHG emissions

Eggs are responsible for 1% of Starbucks’s total carbon footprint.

Pullets are young chickens, footprint is derived from resources to raise them to egg laying age.
Emissions Drivers for Key Categories - Crops

Land Use Change (LUC) varies greatly along crops and can have a significant contribution depending on location.

Direct emissions, from the use of fertilizers and pesticides, is substantial for all crops.

Agricultural activities, mainly use of fuel and electricity, can also substantially contribute to crop production emissions.

Results can vary per production location. Largest sourcing location selected for each crop.
Land Use Change contributes 6%-10% of total contribution to emissions.

Animal emissions, like enteric and manure management, can represent up to 50% of the total protein footprint.

Feed production is significant driver to all animal protein emissions.
Food production leads to 60% of Carbon impact of the food value chain

The total value chain of Food represents ~12% of total Carbon footprint (total + LUC)

*Waste & Disposal Impact is allocated for the value chain based on the contribution of waste packaging and food waste to items categorized as Food Workstream
Key Takeaways

Highest water impacts in food value chain:
- 24% Animal Proteins
- 14% Grains
- 13% Sugar
- 9% Nuts

The total value chain of Food represents 9% of total Water Footprint.
Water Risks – Food commodities

Basins in the US show consistently high-risk basins across Food commodities.

Starbucks greatest water risks are linked to agricultural practices.

Water usage in Dairy and Nuts farming and Dairy manure management are significant drivers for water risk.

Water risk scores provided from World Wildlife Fund are out of 5.
Grains and Sugar are a large source of GHG emissions, due to high emissions in landfill.

Coffee is only the second largest source due to its smaller emission at end of life despite the large food waste volume.

Dairy, due to its high-water content, leads to low GHG emissions compared to its high food waste by volume.

Total Food & Beverage Waste Carbon Footprint: 1056 KMT CO2-eq
Fluid Milk waste is the largest driver of food waste.

Coffee and Other beverages are next largest contributors to Food Waste.

Significant portion of coffee waste is coffee grounds that are composted.

Graph includes both Edible and Inedible Food waste.
Other Beverages

Carbon Footprint (KMT CO2-eq)

- Condensed Milk: 116 KMT CO2-eq
- Refreshments: 111 KMT CO2-eq
- Nonfat Dry Milk: 90 KMT CO2-eq
- Sauce: 77 KMT CO2-eq
- Syrup: 68 KMT CO2-eq
- Tea: 63 KMT CO2-eq
- Juice: 30 KMT CO2-eq
- Other Beverages: 28 KMT CO2-eq
- Cocoa: 18 KMT CO2-eq
- Alt Milk: 11 KMT CO2-eq
- Vanilla: 5 KMT CO2-eq

Water Footprint (Mm3)

- Refreshments: 77 Mm3
- Tea: 61 Mm3
- Juice: 27 Mm3
- Other Beverages: 11 Mm3
- Alt Milk: 8 Mm3
- Condensed Milk: 6 Mm3
- Nonfat Dry Milk: 5 Mm3
- Vanilla: 4 Mm3
- Sauce: 4 Mm3
- Syrup: 3 Mm3
- Cocoa: 2 Mm3

Other Beverages Key Takeaways

Carbon: 1018 KMT CO2-eq
- Carbon: 616 KMT-CO2-eq w/o LUC
 - ~ 7% of total carbon footprint

Water: 207 Mm3
- ~ 20% of total water footprint

- Refreshment is the top contributor to Carbon impact, due to sourcing and production
- Refreshments is the top contributor to water withdrawal due to its water intense process.

- Others include other beverages, topping and powers, bottle water, sugar, and sparkling water
Refreshments Breakdown

Carbon
- 111 KMT CO2-eq
- < 1% of total company Carbon

Water
- 77 Mm3
- ~ 8% of total water footprint

Lemonade refreshments are the leading contributor to carbon and water footprint impact in this breakdown.
Other Beverages Value Chain, Carbon

Key Takeaways

The total other beverages value chain represents ~ 12% of Carbon footprint.

Other Beverages as a Percent of Total Starbucks Footprint

<table>
<thead>
<tr>
<th></th>
<th>CO₂</th>
<th>Water</th>
<th>Waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Beverages</td>
<td>12%</td>
<td>22%</td>
<td>18%</td>
</tr>
</tbody>
</table>

Other Beverages, value chain: Carbon Footprint (kMT CO₂-eq)

- Land Use Change: 404 kMT CO₂-eq
- Beverages, Ingredients: 616 kMT CO₂-eq
- Packaging: 455 kMT CO₂-eq
- Waste and Disposal: 351 kMT CO₂-eq
- Total: 1824 kMT CO₂-eq
Key Takeaways

The production and processing of ingredients are the main indicators for water withdrawal in other beverages value chain (~90.5%)

The value chain represents ~22% of total company water footprint

Other Beverages Value Chain, Water

Other Beverages, value chain: Water Withdrawal (Mm3 water)

Beverages, Ingredients: 207
Packaging: 19
Waste and Disposal: 0
Total: 226

Other Beverages as a Percent of Total Starbucks Footprint

<table>
<thead>
<tr>
<th></th>
<th>CO₂</th>
<th>Water</th>
<th>Waste</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12%</td>
<td>22%</td>
<td>18%</td>
</tr>
</tbody>
</table>
Sugar and Tea Sourcing Land Use Change

The impact due to LUC for sugar and tea is much lower when compared to Coffee and Cocoa.

LUC analysis with better data would be beneficial to understand and address the carbon impacts appropriately.
Water Risk Assessment – Tea

TEA is shown to be sourced from high water risk areas in China.

Primary water risk for tea is flooding and water quality. The greatest risk is in the Yangtze River Basin.

Water risk scores provided from World Wildlife Fund are out of 5.
STORE EQUIPMENT & TRANSPORTATION
Equipment, Fixture, and Furnitures Breakdown

Carbon footprint by item

- Equipment, Fixture, and Furnitures: 776 KMT CO2-eq
- Most of the impact is accounted by spend data (~91%)
- Equipment represents ~98% of the impact

- Spend data for equipment includes: HVAC, Casework, Finishes, and merchandising equipment
- Mass data was derived from shipment history of fridges, freezers, food cases, etc.
Impact by Equipment Type

- **Carbon Footprint (KMT CO2-eq): 58.5 KMT CO2-eq**
 - 8% of Equipment, Fixtures, & Furniture footprint

- **Water Footprint (Mm3): 2.5 Mm3**
Store Energy Use Breakdown

FY08 ENERGY USE
- HVAC: 30%
- Refrigeration: 14%
- Lighting: 13%
- Beverage: 17%
- Hot Water: 12%
- Misc: 12%
- Ovens: 2%

Energy Performance kWh/sq ft/mo

FY17 ENERGY USE
- HVAC: 29%
- Lighting: 13%
- Beverage: 13%
- Refrigeration: 12%
- Lighting: 10%
- Equipment: 13%
- HVAC: 29%
- Computer Systems: 2%
- Misc: 2%
- Water Filtration: 1%
- Outlets: 4%
- Dishwasher: 5%
- Ice Machine: 5%
- Water heater: 5%
- Ovens: 9%

Launch of elevated food platform
Global Transportation (507 KMT CO2-eq)

Represents ~ 3% of total Carbon Footprint

Carbon Footprint (KMT CO2-eq)